\qquad

C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name : Engineering Mathematics - III
Subject Code : 4TE03EMT1/4TE03EMT2
Branch: B.Tech (All)
Semester: 3
Date: 08/03/2021
Time: 11:00 To 02:00
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) If $f(D) y=X$ is given linear differential equation then its general solution is \qquad .
(a) $y(x)=C . F+P . I$
(b)Solution of $f(D)=0$
(c) $y(x)=P . I$
(d)None of these
b) If $f(-x)=-f(x)$ then f is
(a) Even function (b)Odd function
(c)(a) and (b) both (d) None of these
c) The operator ' D ' means
(a)Degree of equation(b) Order of equation
(c) $\frac{d}{d x}$ (d)None of these
d) If the function $f(x)$ is odd then which of the following is/are zero?
(a) a_{0}
(b) a_{n}
(c) b_{n}
(d)(a) and (b) both
e) If roots of auxiliary equation are $m_{1}=1$ and $m_{2}=-2$ then its C.F is \qquad
(a) $c_{1} e^{x}+c_{2} e^{-2 x}$
(b) $c_{1} e^{x}+c_{2} e^{-x}$
(c) $c_{1} e^{-x}+c_{2} e^{-2 x}$
(d) $c_{1} e^{2 x}+c_{2} e^{-2 x}$
f) If the differential equation is $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$ then roots of auxiliary equation is/are \qquad
(a) $m_{1}=1, m_{2}=-2$ (b) $m_{1}=-1, m_{2}=-1$
(c) $m_{1}=1, m_{2}=1$ (d) $m_{1}=2, m_{2}=-1$
g) The graph of odd function is symmetric about
(a) Opposite quadrant
(b) X - axis
(c) Y -axis
(d) None of these
h) Laplace transform of $e^{2 t+3}$ is
(a) $\frac{e^{3}}{s-2}(s>2)$
(b) $\frac{e^{2}}{s-3}$
(c) $\frac{1}{s-\log 2}$
(d) $\frac{1}{s-2}$
i) Laplace transform of $t^{-\frac{1}{2}}$ is
(a) $\frac{\pi}{\sqrt{2}}$
(b) $\sqrt{ }\left(\frac{\pi}{s}\right)$
(c) $\frac{\sqrt{\pi}}{s}$
(d)None of these
j) $L(\sin a t)=$ \qquad
(a) $\frac{a}{s^{2}+a^{2}}$ (b) $\frac{\bar{s}}{s^{2}+a^{2}}$ (c) $\frac{-s}{s^{2}+a^{2}}$ (d) $\frac{-a}{s^{2}+a^{2}}$
k) $L^{-1}\left(\frac{12}{s^{2}-9}\right)=$ \qquad
(a) $3 \sinh (4 t)(b) \quad 4 \sinh (3 t)$
(c) $4 \cosh (4 t)(\mathrm{d}) \quad 3 \cosh (4 t)$

1) Which of the following is the partial differential equation of $z=a x+b y+a b b y$ eliminating arbitrary constant .
(a) $z=p x+q y+p q(\mathrm{~b}) z=p z-q y+p q$
(c) $z=p x+q y-p q(\mathrm{~d}) z=p x-q y-p q$
m) The rate of convergence of Newton - Raphson method is
(a) First order (b) Second order (c) Third order (d) None
n) Solution of $\left(D^{2}-1\right) y=0$ is
(a) $y=\left(c_{1}+c_{2}\right) e^{x}$ (b) $y=c_{1} e^{-x}+c_{2} e^{x}$
(c) $y=\left(c_{1}+c_{2} x\right) e^{x} \quad$ (d)None of these

Attempt any four questions from $\mathrm{Q}-2$ to $\mathbf{Q - 8}$.

Q-2 Attempt all questions

a. Find the root of equation $x^{3}-3 x-5=0$ using bisection method correct up to three decimal places.
b. Find real root of equation $x e^{x}-3=0$, Which lies between 0.8 and 0.9 correct to three decimal places using False position method.
c. Find the root of equation by using Newton-Raphson method
$2 x-\tan x=0, x>0$.

Q-3 Attempt all questions
a. Expand $f(x)=x \sin x$ in a Fourier series in the interval $0 \leq x \leq 2 \pi$.
b. Express $f(x)=x+x^{2}$ as a Fourier series with period 2 in the range
c. State Dirichlet's condition for Fourier series.

Q-4 Attempt all questions

a. Find the Fourier cosine series corresponding to the function
$f(x)=\pi-x$ defined in the interval 0 to π.
b. Prove that $\int_{0}^{\infty} \frac{e^{-a t}-e^{-b t}}{t} d t=\log \frac{b}{a}$
c. Find Laplace transform of the function $f(t)=\left\{\begin{array}{c}\frac{t}{T}, 0<t<T \\ 0, \quad t>T\end{array}\right.$.

Q-5 Attempt all questions
a. Solve: $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\cos 2 x$
$\begin{array}{ll}\text { b. Find } L\left(\frac{\cos a t-\cos b t}{t}\right) & 05\end{array}$
c. Find a root of the equation $x^{3}-9 x+1=0$, correct to three decimal 04 places using False position method.

Q-6 Attempt all questions
a. Solve the given differential equation by using Laplace transform
$y^{\prime \prime}+4 y=0, y(0)=2, y^{\prime}(0)=8$.
b. \quad Solve: $\left(D^{2}-7 D+10\right) y=5 x+7$

05
c. Write down general form of linear differential equation in higher order.
a. Solve: $\frac{d^{3} y}{d x^{3}}-7\left(\frac{d y}{d x}\right)-6 y=0$.
b. Find inverse Laplace transform by using convolution theorem $L^{-1}\left\{\frac{s}{s^{2}+a^{2}}\right\}$
c. Find: $L\left(e^{4 t} \sin 2 t \cos t\right)$

Q-8 Attempt all questions

a. Obtain the first three terms in the Fourier cosine series for y, where y is
given in the following table:

θ°	0	60	120	180	240	300
y	4	8	15	7	6	2

b. Solve the equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, given $u(x, 0)=6 e^{-3 x}$.

